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Abstract 
Oncogenes, when mutated or overexpressed, drive tumorigenesis and lead to oncogene addiction, 

where cancer cells rely on these genes for survival and proliferation. Stratifying oncogene-addicted 

cohorts is essential for precision medicine but remains underexplored. We propose OncoStratifier, a 

framework to identify drugs that specifically target oncogene-addicted cancer cells, differentiating 
between those that induce sensitivity or resistance. Our results reveal 21,020 stratifying drugs across 

267 oncogenes in 31 different cancer types. We have identified 59 mutational markers associated with 

36 of these stratifying drugs across 36 distinct oncogenes and 11 cancer types. These findings 
underscore OncoStratifier’s potential to guide personalized cancer treatment strategies. 
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1 Introduction 

Cancer is characterized by a complex interplay of genetic and environmental factors that drive 

uncontrolled cell proliferation and survival, hallmarks of the disease (1–3). Central to this process are 

oncogenes, which are mutated or overexpressed versions of normal genes (proto-oncogenes) that 

contribute to tumorigenesis (4). Oncogenes such as KRAS (5), EGFR (6), and MYC (7) play pivotal 

roles in regulating cell growth, division, and differentiation. When these genes are altered, they can lead 

to oncogene addiction, where cancer cells become heavily reliant on the continuous activity of these 

oncogenes for their survival and proliferation (4). 
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Oncogene addiction provides a therapeutic target as cancer cells dependent on these oncogenes 

can be selectively targeted by drugs that inhibit their function. For example, inhibitors targeting BCR-

ABL in chronic myeloid leukemia (CML) (8) or EGFR inhibitors in non-small cell lung cancer (NSCLC) 

(9) have shown significant clinical success. However, not all oncogene-addicted cancers can be 

effectively targeted. Some oncogenes are challenging to inhibit directly due to their structural properties, 

while others develop resistance to targeted therapies through secondary mutations or activation of 

alternative signaling pathways (10,11). KRAS, for example, lacks deep binding pockets and has a high 

affinity for GTP/GDP, making it difficult to develop effective inhibitors (12). These resistance 

mechanisms often result from the dynamic changes in cancer cell characteristics, leading to variable 

drug sensitivities and the need for novel therapeutic strategies 

Patient stratification is a critical component of precision medicine, aiming to optimize treatment 

outcomes by tailoring therapies to individual patient profiles. Traditionally, stratification has been 

performed either on the entire cancer patient population or within specific cancer types, delineating 

subtypes based on genetic, molecular, and clinical features (13). While these approaches have 

improved treatment efficacy and patient survival, they often overlook the unique and specific 

characteristics of oncogene-addicted cohorts. 

Given the distinctive nature of oncogene addiction and the associated treatment challenges, there 

is a pressing need to stratify these cohorts with high resolution. Stratifying oncogene-addicted patients 

who currently lack effective treatments can uncover specific vulnerabilities and guide the development 

of more targeted and effective therapies. Despite its potential, such stratification has not been 

systematically implemented. 

To address this gap, we propose the OncoStratifier framework, a systematic approach to identify 

drugs that specifically stratify oncogene-addicted cohorts. This framework aims to uncover drugs that 

can effectively target these unique patient populations by examining changes in drug response specific 

to oncogene addiction. OncoStratifier categorizes drugs based on whether they induce sensitivity or 

resistance within the oncogene-addicted cohort, ensuring that the observed effects are truly specific to 

the oncogene in question. 

By employing this framework, we can better understand the landscape of drug responses in 

oncogene-addicted cancers and identify promising therapeutic candidates. This approach not only 



3	

enhances our ability to provide effective treatments for oncogene-addicted patients but also contributes 

to the broader field of precision oncology, where the goal is to deliver the right treatment to the right 

patient at the right time. Notably, OncoStratifier identified 21,020 instances of exclusive stratification in 

oncogene-addicted cohorts, highlighted increased sensitivity in KRAS-addicted colorectal cancer and 

EGFR-addicted cohorts, and revealed 59 mutational markers associated with 36 stratifying drugs across 

11 cancer types, providing valuable insights for personalized treatment strategies. 

 

2 Results 

2.1 Oncogenic addiction influences the response to targeted therapy 

In the OncoStratifier framework, drugs demonstrating significant impact were categorized into four 

groups based on their stratifying characteristics and changes in response rates (sensitivity) between 

mutated and wild-type cohorts. While stratifying categories refer to oncogene-mutated cohort being 

exclusively stratified by drug response, artifact full categories refer to oncogene-wt cohort being 

exclusively stratified. Stratifying sensitivity (SS) encompasses drugs where the mutated cohort is 

stratified by gaining sensitivity compared to the wild-type (WT) cohort. In contrast, stratifying resistance 

(SR) refers to drugs where the number of responsive cell lines in the mutated cohort decreases, 

indicating a gain in resistance while resulting in a stratified cohort. Additionally, artifact categories 

include full sensitivity (FS), where the mutated cohort gains sensitivity, and full resistance (FR), where 

it loses sensitivity, with the latter two categories primarily stratifying the WT cohort (Figure  1a). 

We identified 21,020 instances where drugs exclusively stratified the oncogene addicted cohort, 

comprising 13,094 SS and 7,926 SR cases across 267 oncogenes in 31 different cancer types (Figure  

1b, Supplementary Table S1-S2). While most significant drugs exhibited near maximal changes in 

stratification ability (Oncostratifier Score≈1 or ≈-1), there were notable exceptions with minimal but 

statistically significant changes (Oncostratifier Score≈0). 

Further examination focused on prominent oncogene addictions, such as KRAS and EGFR in 

colorectal carcinoma (Figure  1c-d). KRAS mutations, prevalent in various cancers, pose challenges in 

direct targeting due to the complexity of its binding site and high affinity for downstream effectors, often 

leading to off-target effects (14). We identified three stratifying drugs where the KRAS-WT cohort was 
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predominantly resistant, yet the KRAS-Mut cohort showed increased sensitivity, attributed to KRAS 

addiction: 123829, Z−LLNle−Cho, and BI−2536. One of these drugs, the gamma secretase inhibitor 

Figure  1 Oncostratifier categories, distribution of significant drugs, and KRAS & EGFR addictions in 
colorectal carcinoma. a, 4 categories of drugs found by Oncostratifier: Stratifying categories include drugs that 
exclusively stratify the oncogenic addicted cohort whereas Full categories include drugs which exclusively 
stratifies oncogene-WT cohort. On the other hand, Sensitivity categories refer to oncogene addicted cohort 
gaining sensitivity to selected drug whereas Resistance categories refer to drugs gaining sensitivity with 
oncogene addiction. b, Histogram of drugs found significantly per Oncostratifier category. c-d, Drug response of 
cancer cell lines to stratifying drugs found in KRAS (c) or EGFR (d) addiction in colorectal carcinoma divided by 
oncogene addicted and oncogene-WT cohorts. 
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(GSI) Z−LLNle−Cho, interferes with Notch signaling (15) which is required for the survival of KRAS 

induced lung cancer cells (16). This finding highlights the sensitivity gain associated with KRAS 

mutations, although observed in a different cancer type. Conversely, drugs like AZD8055, Pictilisib, 

ABT737, and JQ1 demonstrated increased resistance in KRAS-Mut cohorts. Drugs found in both 

categories underscore the intricate relationship between genetic mutations and drug response, which 

could inform more targeted treatment approaches and could be a potential therapy for KRAS-addicted 

patients. 

EGFR (Epidermal Growth Factor Receptor) is a well-documented oncogene in various cancers, 

including colorectal cancer (17–19). Mutational activation of EGFR leads to uncontrolled cell 

proliferation and survival. EGFR’s role in colorectal cancer makes it a prime target for anticancer 

therapies, with several anti-EGFR therapies such as cetuximab (20,21) and panitumumab (22) already 

demonstrating clinical efficacy in managing disease progression in patients with wild-type KRAS 

(23,24). However, the development of resistance to EGFR-targeted therapies, often through secondary 

mutations or alternative signaling pathways (20,24), remains a challenge, underscoring the need for 

identifying additional drugs that can bypass or overcome these resistance mechanisms. 

In our analysis, we identified 21 drugs that stratify the EGFR-Mut cohort with increased sensitivity 

(SS), indicating a potential for these drugs to enhance treatment outcomes in patients exhibiting EGFR-

driven oncogenesis. 5 of these drugs; pevonedistat, PFI-1, GSK690693, nutlin-3a (-), and dabrafenib 

have an almost maximum score of 1 which suggests that they nearly perfectly stratify the EGFR-

addicted patients while all EGFR-WT cancer cell lines are fully resistant to the drug. The observed 

sensitivity to the NEDD8 inhibitor pevonedistat in EGFR-mutated colorectal cancer cell lines is 

corroborated by literature demonstrating that the combined blockade of NEDD8 and EGFR pathways 

significantly enhances growth arrest and apoptosis in colorectal cancer models (25).  

In total, we identified stratifying drugs for 164 different oncogene addictions where the relation 

between the oncogene and cancer is supported by literature including KRAS and EGFR colorectal 

carcinoma, ERBB2 in breast carcinoma, MYC in ovarian carcinoma (Supplementary File) The drugs 

identified in both SS and SR categories illustrate the complex and varied responses based on KRAS or 

EGFR mutational status, reinforcing the importance of personalized medicine approaches in the 

treatment of cancer. Understanding these dynamics can help refine therapeutic strategies, potentially 
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leading to the development of more effective second-line treatments or combination therapies that can 

address resistance or druggability issues in oncogene addiction. 

2.2 Oncogene-Addicted Cohorts Gain Sensitivity to Oncogene-Targeted 

Therapies 

The robustness of the OncoStratifier approach was assessed by examining if oncogene addicted 

cohorts gain sensitivity against drugs that specifically target the oncogene. It was hypothesized that 

such drugs would predominantly fall into the stratifying sensitivity (SS) and full sensitivity (FS) groups, 

which denote a gain in sensitivity when the oncogene is mutated. Confirming this hypothesis, our 

analysis showed that 44.1% of drugs targeting the tested oncogenes were categorized as SS, and 

22.5% as FS. In contrast, fewer drugs were categorized under stratifying resistance (SR) at 14.4%, and 

full resistance (FR) at 18.9%, with the latter category showing minimal responsive cell lines in oncogene 

addicted cohort (Error! Reference source not found.a). 

The drugs classified under SR and FR can be attributed to two main factors. First, the influence of 

secondary targets of the drugs might confound their efficacy. Secondly, the effects of the oncogene may 

vary by cancer type. A case in point involves drugs targeting EGFR, which is a crucial oncogene in 

glioblastoma(26), non-small cell lung(27), head and neck(28), colorectal(17), and pancreatic 

cancers(29). In these cancer types, we found 4 significant drugs in the SS category and 3 in FS, 

signifying a gain in treatment sensitivity. However, only 2 drugs, Pelitinib and CUDC-101, were identified 

in the SR category with score less than 0.4, both in non-small cell lung cancer, where nearly half of the 

oncogene-addicted cohort still responded to both drugs, highlighting the complex dynamics of drug 

response. Moreover, CUDC-101 also targets HAC1-10 and ERBB2 genes as well as EGFR, thus it’s 

low selectivity makes CUDC-101 less reliable. 

Further analysis was performed on oncogene-targeting drugs within each cancer type, focusing only 

on types where at least 10 significant drugs were found in any category to ensure a valid analysis. 

Results indicated notable sensitivity gains in breast cancer (51.72% SS, 44.83% FS), colorectal 

carcinoma (57.69% SS, 19.23% FS), ovarian cancer (80% SS, 20% FS), melanoma (30.77% SS, 

38.46% FS), B-Cell Non-Hodgkin’s Lymphoma (45.45% SS, 27.27% FS), and gastric carcinoma 

(53.85% SS, 23.08% FS). Conversely, in non-small (16.67% SS, 25% FS) and small cell lung 

carcinomas (36.84% SS, 10.53% FS), the drugs identified did not predominantly fall into categories that 
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indicate sensitivity gain, underscoring the variable efficacy of oncogene-targeting drugs across different 

Figure 2: Distribution of oncogene targeting significant drugs and mutational markers of oncostratifiers 
for well-known oncogene addictions a, Distribution of significant drugs found in an oncogene addiction where 
the oncogene is also targeted by the drug. b, Response of oncogene-WT cohort as well as oncogene addicted 
cohorts with and without mutation in the mutational markers of oncostratifiers found for well-known oncogene 
addictions. P values refer to significance of change between oncogene-WT cohort and other cohorts using Fisher-
s exact test with BH correction. 
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tumor types. 

2.3 Drugs Repeatedly Impacted by Oncogene Addiction 

Oncogene addiction influences tumor development through complex interactions involving multiple 

genes and pathways. This dependency often modulates the effectiveness of drugs targeting various 

molecular pathways. Our OncoStratifier framework identified several drugs with stratifying 

characteristics frequently observed across multiple cancer types and oncogenes. 

Specifically, seven drugs were repeatedly categorized as stratifying sensitivity (SS) in over 100 

distinct oncogene-cancer pairs (Fig S1). These drugs include CX-5461, Oxaliplatin, Cisplatin, 5-

Fluorouracil, Mirin, Afatinib, and Methotrexate, with Gemcitabine also consistently appearing in the SS 

category. Notably, CX-5461(30,31), Oxaliplatin(32–34), Cisplatin (35–37), Methotrexate(38), and 

Gemcitabine (39) primarily interfere with RNA and/or DNA synthesis and cause DNA damage. In 

contrast, Mirin prevents homology-dependent repair by affecting G2/M checkpoint(40), Afatinib targets 

tumor growth factors which are important in multiple cancer types(41–44), and 5-Fluorouracil (45,46) 

impairs the synthesis pyrimidine which then induces apoptosis. These mechanisms suggest a broader 

impact on cellular processes crucial in oncogene-addicted cells, reflecting why disruptions in nucleic 

acid metabolism are particularly effective. Morever, these inhibitors may need specific requirements for 

their effectiveness, such as Cisplatin needing ERK activation to induce apoptosis (37) or knockdown of 

NFBD1 and MDC1 enhancing the impact of cisplatin and 5-fluorouracil (46) which further support the 

change the response against these drugs with oncogene addiction. 

The pervasive effectiveness of these drugs across various contexts is also underscored by their 

frequent use alone or in combination therapies in multiple cancer types. The link between oncogenic 

addiction and enhanced sensitivity to drugs affecting DNA/RNA synthesis implies that oncogene-

addicted cells may rely more heavily on these fundamental processes, making them more vulnerable 

to such interventions. 

Further investigation into the specific pathways and oncogene interactions with these drugs could 

provide deeper insights into the mechanisms by which oncogene addiction alters drug sensitivity. 

Additionally, exploring patterns of resistance development and the efficacy of combination therapies 

involving these drugs could inform more effective treatment strategies for oncogene-addicted cancers. 



9	

2.4 Identifying Mutational Markers for Stratifying Drugs 

In the pursuit of transitioning from in vitro cell line data to in vivo patient tumors or PDX models, it is 

crucial to identify biological markers that can segregate similar drug responses for the stratifying drugs 

that the Oncostratifier identified. Thus, we investigated genetic markers such as mutational status that 

correlate with drug stratification in oncogene-addicted cohorts. 

We identified 59 mutational markers associated with 36 stratifying drugs across 36 distinct genes 

and 11 cancer types, encompassing 46 cancer type-oncogene pairings (Error! Reference source not 

found.b, Sup. Fig. S2, S3, S4, S5). For 7 of these pairings, there was established literature support 

linking the oncogene to cancer, reinforcing the relevance of our findings (Supplementary Fig. ). 

Acute Myeloid Leukemia (AML) and FLT3 Addiction (47): We identified BMS509744 as a 

stratifying drug (SS) with NRAS as a mutational marker in the context of FLT3 oncogene addiction in 

AML. Within the oncogene-addicted cohort, only the subcohort with NRAS WT exhibits gained 

sensitivity to the ITK inhibiting drug BMS509744 (P ≈ 1.14 × 10−3), while the NRAS mutated subcohort 

remained resistant (P ≈ 1.39 × 10−1). This delineation underscores the pivotal role of NRAS status in 

modulating response to BMS-509744 and highlights the drug’s potential in targeting FLT3-addicted 

leukemia with specific genetic backgrounds.  

Colorectal Cancer: For colorectal cancer characterized by KRAS addiction, two stratifying drugs 

were highlighted: 123829 and AZD8055. The drug 123829, categorized as SS (stratifying sensitivity), 

is associated with four mutational markers: ITSN1, KMT2D, NF1, and PPP2R1A. Notably, only the cell 

lines exhibiting mutations in KMT2D and/or NF1 gain sensitivity to 123829 with KRAS addiction (P ≈ 

1.41 × 10−3 and ≈ 1.64 × 10−3, respectively). Conversely, cell lines with wild-type KMT2D and/or NF1 

stay predominantly resistant to 123829. Interestingly, almost all cell lines with PPP2R1A mutations 

demonstrate sensitivity to 123829 (P ≈ 6.50 × 10−5), suggesting that PPP2R1A mutation status can be 

a robust predictor of sensitivity to this drug. 

On the other hand, the drug AZD8055, which falls under the SR (stratifying resistance) category, 

shows a unique pattern of association with only one mutational marker, AKAP9. In KRAS-addicted 

colorectal cancer cell lines, those with the wildtype AKAP9 gene exhibit resistance to AZD8055, 

indicative of a loss in drug sensitivity correlated with KRAS addiction (P ≈ 8.51 × 10−5). However, in cell 
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lines where AKAP9 is mutated, more than half remain sensitive to AZD8055, demonstrating that AKAP9 

mutations may mitigate the loss of sensitivity usually associated with KRAS addiction. 

Furthermore, we have identified the Mirin as a stratifying drug with FXR1 mutation status as a marker 

in UBR5-addicted colorectal cancer cell lines. UBR5 is involved in damage response and apoptosis (48)  

and also found to be potentially an oncogene in colorectal carcinoma (49). With the UBR oncogene 

addiction, only the cell lines with FXR1 mutation gain sensitivity to Mirin significantly (P ≈ 8.11 × 10−5) 

compared to UBR WT cohort. Thus, FXR1 can be used as a marker to decide which UBR5 addicted 

colorectal carcinoma patients should be given Mirin as a treatment. 

Non-Small Cell Lung Cancer (NSCLC): In NSCLC, CX-5461, targeting RNA polymerase I, was 

effective in NRAS-addicted cohorts with SETD2 mutations (P ≈ 4.31 × 10−5), suggesting a potential 

synthetic lethal interaction between NRAS and SETD2 in the presence of CX-5461 drug. 

Ovarian Cancer: In ovarian cancer, Buparlisib (targeting ROS1 addiction), Pemetrexed (targeting 

BRAF addiction), and GSK690693 (targeting BRAF addiction) showed differential effectiveness in 

oncogene-addicted cohorts based on ATRX, KMT2D, and PIK3CA mutations, respectively. The 

effectiveness of Buparlisib was compromised in ROS1-mutated cohorts with WT ATRX (P ≈ 6.02 × 10−5), 

whereas Pemetrexed and GSK690693 showed increased sensitivity in BRAF-addicted cohorts with 

mutated KMT2D (P ≈ 1.51 × 10−3) and mutated PIK3CA (P ≈ 8.45 × 10−7), respectively, illustrating the 

potential for KMT2D and PIK3CA as a stratifying marker in BRAF-driven ovarian cancers. 

These findings underscore the complexity of drug responses in oncogene-addicted cohorts and 

highlight the importance of genetic markers in predicting therapeutic outcomes. Identifying such markers 

not only aids in understanding drug mechanisms but also assists in tailoring personalized treatment 

strategies for cancer patients. 

2.5 Stratification of Oncogene-Addicted Patients Based on Mutational Markers 

We utilized the TCGA patient cohort to stratify oncogene-addicted patients according to the mutational 

status of previously identified markers. For each cancer type-oncogene-mutational marker pairing, we 

assessed whether there were sufficient numbers of patients exhibiting oncogene addiction, and if the 

stratification by mutational marker resulted in adequately sized subcohorts (at least three patients in 

both WT and mutated groups) to potentially apply targeted therapy (Error! Reference source not 

found.). 
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Table 1: Number of oncogene addicted TCGA patients (per cancer type-oncogene pair) stratified by the 
mutational marker, and differentially expressed genes(DEGs). The drug response in bold subcohorts is 
significantly different (P < 0.05) compared to cohorts without oncogene addiction in cancer cell lines. * sign before 
the value shows more resistance and * sign after the value refers to a better response. 

 

In the majority of cases, the marker-WT subcohort was larger than the marker-mutated subcohort. 

This finding is significant because if the WT status of the marker is linked with a better response in 

oncogene-addicted cell lines compared to non-addicted cohorts, it implies a substantial patient group 

Cancer Oncogene Marker 
Oncogene 
Addicted 
Patients 

Marker 
Mut 

Marker 
WT DEGs Tested 

Genes 

AML FLT3 NRAS 52 2 50* 12 16758 
BRCA BRD4 PIK3R1 8 3* 5 40 19170 
BRCA MSI2 NR4A2 5 1* 4 120 19004 
BRCA ROS1 CHD9 22 6* 16 79 19556 
COAD JAK3 MAP2K1 17 3 14* 170 19121 
COAD KRAS AKAP9 220 16 *204 1140 19943 
COAD KRAS ITSN1 220 14* 206 70 19943 
COAD KRAS KMT2D 220 29* 191 2028 19943 
COAD KRAS NF1 220 8* 212 14 19943 
COAD KRAS PPP2R1A 220 6* 214 93 19943 
COAD KSR2 FXR1 25 3* 22 17 19263 
COAD MECOM FXR1 36 7* 29 7 19362 
COAD MTOR FXR1 43 7* 36 5 19425 
COAD MYBL1 MAP2K1 20 4 16* 17 19201 
COAD NTRK3 FXR1 24 5* 19 14 19149 
COAD NUP98 CNOT1 26 13 13* 79 19241 
COAD NUP98 PIK3CA 26 11 15* 20 19241 
COAD NUP98 PTEN 26 7 19* 30 19241 
COAD UBR5 FXR1 33 4* 29 25 19408 
COAD WWP1 FXR1 27 6* *21 17 19300 
COAD WWP1 PIK3CA 27 13* *14 79 19300 
GBM IGF1R EGFR 3 *1 2 477 18610 
NSCLC KDM5A ARID1A 13 2* 11 340 19498 
NSCLC LGR5 CLSPN 24 *1 23 793 19682 
NSCLC MAP3K13 CLSPN 14 *1 13 18 19493 
NSCLC MGAM TP53BP1 58 3 55 4 19863 
NSCLC NTRK3 KEAP1 48 15 33* 1392 19832 
NSCLC PDGFRB MAP4K3 17 2 15* 125 19673 
SCLC CARD11 TJP1 32 3* 29 18 19719 
SCLC INSR MED12 14 1* 13 13 19435 
SKCM JAK3 ANK3 20 14 *6 38 19722 
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could benefit from the stratifying drug. Notable instances include FLT3 addiction in AML, where 96% 

(50/52) of the patients possess WT NRAS, showing a better response to the drug BMS-509744; JAK3 

and MYBL addictions in COAD with 80% (14/17) and 82% (16/20) people having WT MAP2K1, 

respectively; and NUP98 addiction in COAD where over 50% of the patients have a WT marker 

(CNOT1, PIK3CA, or PTEN) associated with better responses to HG558801. 

Conversely, even with smaller numbers, the mutated marker gene often correlates with improved 

responses, indicating that, with oncogene addiction, sensitivity enhancements are confined to cohorts 

with the mutated marker. For example, in COAD with KRAS addiction, out of 220, we identified 14 and 

29 patients possessing mutated ITSN1 and KMT2D markers, respectively. In another case, 13 WWP1-

addicted COAD patients with mutated PIK3CA also showed enhanced drug sensitivity. 

Additionally, PIK3CA was identified as a critical mutational marker for response to the drug Mirin in 

WWP1-addicted COAD patients. In this group, patients with mutated PIK3CA demonstrated significantly 

increased sensitivity to Mirin, whereas those with WT PIK3CA lost sensitivity, highlighting the mutation’s 

dual role in modifying drug response. This clear dichotomy makes PIK3CA a valuable predictive marker 

for therapeutic strategies in WWP1-addicted COAD, with nearly equal division of patients into mutated 

and WT subcohorts. 

 

2.5.1 Differentially expressed genes within oncogenic addicted cohort and their 

enrichment 

We further investigated the oncogene-addicted patient cohorts and their stratification by the mutational 

marker to identify what could cause the change in response between two groups that are split by the 

mutational marker. For this purpose, we first found differentially expressed genes (DEGs) between 

subcohorts that are split by mutational markers (Error! Reference source not found.), then we also 

analyzed these DEGs and conducted an enrichment analysis for these DEGs. We limited our 

investigation to cases where both cohorts with the mutated marker and the WT marker have at least 10 

patients. 

We identified 220 colorectal patients who are addicted to the KRAS oncogene. Previously, we identified 

that significant loss in sensitivity against drug AZD8055 with KRAS addiction only within AKAP9 WT 

cohort which includes 204 of 220 patients. Thus, AKAP9 would be an efficient marker to eliminate KRAS 
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addicted patients who would not benefit from an mTORC targeting drug. Furthermore, we identified 

1140 DEGs between AKAP9 mutated and WT KRAS addicted cohort where these DEGs were enriched 

mostly in major histocompatibility complex (MHC) related gene ontology terms as well as interferon 

gamma response hallmark which is related to apoptosis and cycle. The deterioration in MHC class 1 

molecules are already known to cause ineffectiveness in some cancer treatments (50). Thus, the 

difference in response in both cohorts can be cause due to KRAS addiction impacting the MHC class 

in some patients. Similarly, Interferon-gamma (IFN-γ) plays a vital role in boosting the immune system's 

capacity to identify and destroy cancer cells (51), making it essential for the effectiveness of certain 

therapies (52). 

Another marker was KMT2D whose mutated version was associated with sensitivity gain against the 

drug 123829 with KRAS addiction in colorectal carcinoma. 29 of 220 patients in oncogene addicted 

patients had KMT2D mutation which could benefit the treatment with 123829. Further analysis with 

KRAS addicted patients showed that 2028 genes are differently expressed between KMT2D mutated  

and WT cohorts. Aligned with previous results, these genes were also enriched MHC related GO terms 

and Interferon Gamma Response hallmark.  

 

2.5.2 Validating KRAS-Oncogene Stratifying Drugs on PDX samples. 

TBW… 

 

2.6 Potential Application: Drug Sets to Cover Oncogene Addicted Cohort 

Although stratifying oncogene addiction patients is crucial to define subcohorts that might be sensitive 

to training due to the impact of oncogene mutation, there will be still one subcohort sensitive to the drug 

and one subcohort resistant to it. Thus, not all oncogene-addicted patients are treatable by a stratifying 

drug that is found. To bring the potential treatment option to all of the oncogene-addicted cohorts, we 

investigated stratifying drugs that can cover the whole set of oncogene-addicted cell lines 

(Supplementary Table S3). 

We identified 62 cases in various cancer types where there are at least 10 oncogene addicted cell 

lines and all of them can be covered by only 2 stratifying drugs. Out of these 62 cases, 3 of them were 

oncogene cancer type pairs which is supported by the literature.  
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ERBB2 or widely known as “HER2” is strongly associated with poor prognosis in breast cancer 

(53,54) and impacts the cell growth, differentiation, and migration together with the other members of 

EGFR (55). ERBB2 addicted cohort of 12 cell lines in breast cancer was covered by Afatinib (9 CCLs) 

and Telomerase Inhibitor IX (8 CCLs). The drug Afatinib is already used to target ERBB2 (56); however, 

to the ERBB2 addicted cohort that is resistant to Afatinib (57), the second drug Telomerase Inhibitor IX 

can be an opportunity. 

MDM2 is an oncogene due to highly expressed MDM2 supressing TP53 which increases the risk of 

cancer (58). Inhibition of MDM2 selectively targets PTEN-deficient CRC cells, activating p53 and 

inhibiting tumor growth (59). MDM2 addicted colorectal cancer cohort (11 CCLs) was covered by 

HDAC1 targeting AR-42 (8 CCLs) and AURKA targerting Alisertib (6 CCLs) drugs. HDAC1 can 

deacetylate p53 by binding to MDM2 (60) and AURKA enhances the p53 degradation effect of MDM2 

(61), thus; inhibiting both genes can potentially reduce the p53 degradation and could lead to better 

prognostic outcome in different patients that are MDM2 mutated. 

Moreover, UBR5 is an oncogene associated with poor prognosis in gastric carcinoma (62). 

Oncostratifier showed that UBR5 addicted gastric cancer cohort (12 CCLs) can be covered by PIK3CG 

targeting PIK-93 (8 CCLs) and FEN1 targeting FEN1 (6 CCLs) drugs.  

Furthermore, we found cases where 1 or 2 cell lines in the oncogene addicted cohort are never 

sensitive to any of the stratifying drugs we have identified (Supplementary Table S4). Thus, we also 

investigated the set cover drugs with cell lines that are sensitive to at least 1 stratifying drug. Doing this, 

we were able to identify drug set covers with only 2 stratifying drugs also for other well-known oncogene 

addictions such as FLT3 addiction in Acute Myeloid Leukemia (AML); EGFR addiction in Glioblastoma; 

AKT1, DDR2, MET, NRAS, PIK3CB, RET, and ROS1 addiction in non-small cell lung carcinoma 

(NSCLC); and EGFR and MET in small cell lung carcinoma. 

 

3 Conclusion 

In this study, we proposed Oncostratifier, a statistical framework that leverages drug response data on 

cancer cell lines to find stratification opportunuties for oncogene addicted cohorts in cancer. Although, 

previously stratification methods are used extensively for cancer patients, to our knowledge, 

Oncostratifier is the first method to stratify oncogene addicted cohorts computationally and 
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systematically. The nature of the stratifying oncogene addicted cohort is a more complex problem 

compared to stratifying cancer patients as whole since the latter has the advantage of abundant data 

and usually annotations to support the stratification. Moreover, our systematical approach depends on 

existing drugs, thus making our results directly usable for clinical trials. 

Oncostratifier identified stratifying drugs and stratification on cohorts for multiple oncogene addictions 

in different cancer types including well-known and researched addictions such as EGFR, KRAS, and 

UBR5 addictions in colorectal carcinoma, MYC addiction ovarian carcinoma, and ERBB2 addiction in 

breast cancer. Furthermore, some of these oncogene addictions are known to be untargetable such as 

KRAS in colorectal carcinoma or having resistance such as EGFR in colorectal carcinoma. Thus, 

making our finding more valuable.  

For this problem, there is no ground truth or annotation that can support our findings. By making use of 

the fact that oncostratifier also recognizes sensitivity gain and loss on drugs with oncogene addiction, 

we validated our approach and findings. Oncostratifier showed that drugs, which target a specific 

oncogene and also stratify oncogene addicted cohorts of that specific oncogene where the drug targets 

that specific oncogene, are more likely to be in the oncostratier categories that shows sensitivity gain.  

To make a transition from cancer cell lines to patients, we also identified mutational markers for 

stratifying drugs found by oncostratifier. These markers can stratify patients similar to stratifying drugs, 

thus can be used in cases where there is a lack of drug response data, such as TCGA patient data. We 

also showed that with mutational markers found, we can also stratify oncogene addicted patients for 

more specific treatments. 

PDX related part…. 

Oncostratifier also uncovered a treatment opportunity for oncogene addicted cohorts. For some 

oncogene addictions, using multiple stratifying drugs that are identified for a specific oncogene 

addiction, all of the oncogene addicted cohorts can be treated by using 2 or more of these stratifying 

drugs.  
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4 Methods 

4.1 Data collection and processing 

4.1.1 Cancer cell lines 

We systematically compiled a comprehensive dataset of cancer cell lines, complete with annotations 

and a detailed list of mutations (version 20220510), sourced from the Cell Model Passports (63). The 

mutation status for each gene was determined by focusing exclusively on non-silent variants to ensure 

relevance and specificity in our analysis. 

4.1.2 Drug response 

Our study harnessed drug response data for cancer cell lines from the Genomics of Drug Sensitivity in 

Cancer (GDSC) database (64,65) (version 27Oct23). This dataset encompasses a broad spectrum of 

compounds, 367 for GDSC1 and 198 for GDSC2, each with their putative targets. In instances of 

overlap between GDSC1 and GDSC2, drugs were treated as distinct drugs to preserve the integrity of 

our analysis. The drug efficacy against specific cancer cell lines was quantified using the natural 

logarithm of the 50% growth inhibition values (ln(IC50)). To further our understanding, we transformed 

these ln(IC50) response scores into binary responses, employing the natural logarithm of the peak 

plasma concentration (ln(CMax)) as a threshold. This transformation facilitated the categorization of cell 

line responses into either sensitive (responder) if ln(IC50) is less than ln(CMax) or resistant (non-

responder) groups if ln(IC50) is greater than ln(CMax). 

4.1.3 Oncogenes 

The oncogenes to be tested were obtained from MSK’s Precision Oncology Knowledge Base (66) (latest 

version as of 10/02/2023). Our stringent selection criteria considered only those genes recognized as 

oncogenes in at least one tissue (”Is Oncogene” == ”Yes”) and not classified as tumor suppressor genes 

in any tissue (”Is Tumor Suppressor Gene” == ”No”). 

4.1.4 Primary tumours 

We gathered an array of gene expression, mutation, and clinical data for primary tumor samples from 

the TCGA patient tissue samples, courtesy of the Pan-Cancer Atlas (13). The processed and curated 

data was accessed through the cBio portal (67,68) (accessed on 15/12/2023). Our analysis considered 

only primary tumors as samples. In addition, we remove silent mutations from the mutation data. For 

https://cog.sanger.ac.uk/cmp/download/mutations_all_20220510.zip
https://cog.sanger.ac.uk/cmp/download/mutations_all_20220510.zip
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://www.oncokb.org/cancer-genes
https://www.oncokb.org/cancer-genes
https://www.oncokb.org/cancer-genes
https://cbioportal-datahub.s3.amazonaws.com/
https://cbioportal-datahub.s3.amazonaws.com/
https://cbioportal-datahub.s3.amazonaws.com/
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differential gene expression analysis, we leveraged RSEM (Batch normalized from Illumina HiSeq 

RNASeqV2) mRNA expression data. Moreover, to visualize the normalized expression values of 

differentially expressed genes, we employed log-transformed mRNA expression (RNA Seq V2 RSEM) 

z-scores compared to the expression distribution of all samples. 

4.2 Oncostratifier 

4.2.1 Finding & categorizing stratifying drugs 

Our approach started with the stratification of cancer cell lines into two distinct cohorts: OncogeneMut 

(mutated) and OncogeneWT (wild-type), based on the mutational landscape of the relevant oncogene 

within each cell line. This stratification was restricted by a criterion of minimum representation: for an 

oncogene to be included in our analysis, both its mutated and wild-type (WT) variants had to be 

represented by at least three distinct cell lines to reduce the total amount of tests and ensure a robust 

analysis. The variability (uncertainty) in drug response within these cohorts was analyzed using 

Shannon entropy, a metric that encapsulates the uncertainty inherent in the drug response profiles of 

each group: 

H (OncogeneMut) = −pS log2 (pS) − pR log2 (pR) 

H (OncogeneWT) = −qS log2 (qS) − qR log2 (qR) 

where pS and pR (qS and qR) represent the proportions of sensitive and resistant cancer cell lines 

within the OncogeneMut  (OncogeneWT) cohort, respectively. To discern drugs that selectively stratify one 

cohort but not the other, we examined the differential entropy (∆H) between these cohorts, calculated 

as: 

∆H = H (OncogeneMut) − H (OncogeneWT) 

A positive ∆H value indicates drugs that exhibit pronounced stratification in the OncogeneMut cohort 

with a minimal impact on the OncogeneWT  cohort. Conversely, a negative ∆H underscores drugs that 

predominantly stratify the OncogeneWT cohort. To ascertain the statistical significance of these ∆H 

values, we conducted a permutation test with 10,000 iterations. Each iteration involved the random 

assignment of response labels to the cancer cell lines and the computation of the ∆H score. This 

rigorous process enabled us to derive p-values to assess the probability of getting an extreme value 

than the actual observed ∆H, when the null hypothesis, positing no discernible difference in entropy 

between the two cohorts, is true: 



18	

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
Number	of	iterations	where	|∆𝐻!"#$%&| 	≥ 	 |∆𝐻%'()!*)$|

Total	number	of	iterations	(10,000)  

According to the entropy values of each cohort and ∆H, drugs with a significant entropy score (p-

value< 0.05) were categorized as follows: 

• Stratifying sensitivity (SS): ∆H > 0; p−value < 0.05; qS < qR 

• Stratifying resistance (SR): ∆H > 0; p−value < 0.05; qS > qR 

• Full sensitivity (FS): ∆H < 0; p−value < 0.05; pS > pR 

• Full resistance (FR): ∆H < 0; p−value < 0.05; pS < pR 

The stratifying categories denote cancer cell lines acquiring stratification potency through either 

the acquisition (SS) or loss (SR) of sensitivity in different subcohorts due to oncogenic addition. 

Although the cell lines are stratified in the OncogeneMut  both for SS and SR, their difference arises 

from the drug response in the OncogeneWT  where the cell lines are either dominantly resistant (SS) or 

sensitive (SR). Conversely, other groups signify a reduction in stratification capability in the 

OncogeneMut  group due to the resistant cell lines gaining (FS) or sensitive cell lines losing (FR) 

sensitivity. 

4.3 Further Analysis of Stratifying Drugs 

4.3.1 Finding mutational markers for stratifying drugs 

We revealed markers for drugs that stratify oncogene-mutated cell lines by an association analysis 

between drug response (sensitive or resistant) and the mutational status of each cancer-related gene 

in both the OncogeneMut and OncogeneWT cohorts. This analysis employed Fisher’s exact test, 

focusing on genes previously identified as cancer genes (CGs) amid cancer functional events (CFEs) 

(65). Due to the multiplicity of genes tested for each stratifying drug, the p-values from Fisher’s exact 

test were corrected using the Benjamini-Hochberg (69) procedure. A gene was deemed a mutational 

marker of a stratifying drug if the corrected p-value in the OncogeneMut cohort was below 0.05, but not 

in the OncogeneWT cohort. 

4.3.2 Differential gene expression analysis 

To transition our investigation to the primary tumor level, considering only the primary tumor samples 

where the oncogene is mutated, we discerned differentially expressed genes between subcohorts 

where the marker gene was either mutated or wild-type (WT). Initial steps involved the exclusion of 
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genes with variance below 0.0001 in the rounded RSEM read counts. Counts that turned negative 

due to 

RSEM adjustments were reset to 0. The processed matrix was then inputted to the DeSeq2 (70) 

algorithm (pyDeSeq2 (71)). Notably, while DeSeq2 necessitates raw read counts as input, it also 

allows the use of rounded RSEM read counts (72). DeSeq2 was executed twice: initially to identify 

Cook outliers, and subsequently to identify differentially expressed genes after imputing values filtered 

out based on Cook’s distance. As suggested by DeSeq2, only the genes whose p-values passed the 

independent filtering stage (70) were identified and then adjusted via the Benjamini-Hochberg 

procedure (69). Lastly, genes with adjusted p-values below 0.05 were classified as differentially 

expressed. 

4.3.3 Gene enrichment analysis 

We investigated whether the differentially expressed genes associated with each cancer-oncogene-

marker pair were significantly enriched within various gene sets, drawing from Gene Ontology 

(version 2023; encompassing biological processes, cellular components, and molecular functions) 

(73), MSigDB Hallmark (74), and canonical pathways from databases such as KEGG (2021, Human) 

(75), WikiPathway (2023, Human) (76), and Reactome (2022) (77). This analysis was facilitated by 

EnrichR (version June 8, 2023, accessed on 17/01/2023) (78), which employs Fisher’s exact test to 

evaluate enrichment and utilizes the Benjamini-Hochberg procedure (69) to adjust p-values, 

accounting for multiple testing.  

 

5 Supplementary Information 

Supplementary Tables: 

• Table S1: Detailed results of every drug found significant over all cancer type-oncogene pairs. 

The table includes the found drug categories, entropy scores in both cohorts, oncostratifier 

score (∆H), oncostratifier p-value, mutational marker if found, and additional statistics on 

oncogene addicted patients for each case as well as differentially expressed genes for the 

mutational markers found.  

https://htechnopole-my.sharepoint.com/:x:/g/personal/yasin_tepeli_visitors_fht_org/EbcaGlA5wqdOhAHYEsrnL-cBNI3OjTZ7r2g3gbQLKUv_gg?e=3cNTre
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• Table S2: Number of oncostratifier-drug and oncogene pairs found for each cancer type and 

their assigned categories. 

• Table S3: For each cancer type-oncgene pair, set of stratifying drugs that can cover all 

oncogene addicted cancer cell lines.  

• Table S4: For each cancer type-oncgene pair, set of stratifying drugs that can cover all 

oncogene addicted cancer cell lines where each cancer cell line has at least 1 responsive 

stratifying drug. 

Supplementary Document: Includes supplementary methods, results and figures. 
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